Chris
Harrison

Vibrosight: Long-Range Vibrometry for Smart Environment Sensing

Smart and responsive environments rely on the ability to detect physical events, such as appliance use and human activities. Currently, to sense these types of events, one must either upgrade to “smart” appliances, or attach aftermarket sensors to existing objects. These approaches can be expensive, intrusive and inflexible. In this work, we present Vibrosight, a new approach to sense activities across entire rooms using long-range laser vibrometry. Unlike a microphone, our approach can sense physical vibrations at one specific point, making it robust to interference from other activities and noisy environments. This property enables detection of simultaneous activities, which has proven challenging in prior work. Through a series of evaluations, we show that Vibrosight can offer high accuracies at long range, allowing our sensor to be placed in an inconspicuous location. We also explore a range of additional uses, including data transmission, sensing user input and modes of appliance operation, and detecting human movement and activities on work surfaces.

Additional media can be found on Yang Zhang's site.

Download

Reference

Zhang, Y., Laput, G. and Harrison, C. 2018. Vibrosight: Long-Range Vibrometry for Smart Environment Sensing. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology (Berlin, Germany, October 14 - 17, 2018). UIST '18. ACM, New York, NY. 225-236.

© Chris Harrison