BeamBand: Hand Gesture Sensing with Ultrasonic Beamforming

Yasha Iravantchi Mayank Goel Chris Harrison
Carnegie Mellon University, Human-Computer Interaction Institute
5000 Forbes Avenue, Pittsburgh, PA 15213
{ysi, mayank, chris.harrison}@cs.cmu.edu

ABSTRACT
BeamBand is a wrist-worn system that uses ultrasonic beamforming for hand gesture sensing. Using an array of small transducers, arranged on the wrist, we can ensemble acoustic wavefronts to project acoustic energy at specified angles and focal lengths. This allows us to interrogate the surface geometry of the hand with inaudible sound in a raster-scan-like manner, from multiple viewpoints. We use the resulting, characteristic reflections to recognize hand pose at 8 FPS. In our user study, we found that BeamBand supports a six-class hand gesture set at 94.6% accuracy. Even across sessions, when the sensor is removed and reworn later, accuracy remains high: 89.4%. We describe our software and hardware, and future avenues for integration into devices such as smartwatches and VR controllers.

CCS CONCEPTS
Human-centered computing → Human computer interaction (HCI) → Interaction techniques → Gestural input

KEYWORDS
Hand Input; Hand Gesture; Acoustic Reflectometry; Acoustic Beamforming; Acoustic; Interaction Techniques; Wearables

1 INTRODUCTION
Robust hand gesture detection holds the promise to enrich user interfaces and improve immersiveness, whether it be smartwatches to AR/VR systems. Unfortunately, identifying hand gestures without instrumenting the hand (e.g., gloves, controllers) has proven to be challenging, which motivates the need to identify new methods. Prior research includes leveraging electromyography [38][39], bio-acoustics [23][15], electrical impedance tomography [50][51], contour sensing [7], and worn cameras [20]. While each approach has its strengths and drawbacks, a common weakness is robust accuracy across users and worn sessions.

In this paper, we present our work on BeamBand, a new approach for worn hand gesture sensing, which leverages acoustic beamforming. We use small in-air ultrasonic transducers arranged along the contour of the wrist (Figure 1A), which offers a stable vantage point from which to capture hand pose. Using active beamforming, we steer and focus ultrasound towards areas of interest on the hand (Figure 1B). We also multiplex our transducers, capturing beamformed reflections from slightly different viewpoints (Figure 1B), offering rich signals for machine-learning-driven hand gesture recognition (Figure 1C).

To assess BeamBand’s recognition performance, we conducted a ten-participant study, adopting two gesture sets from the literature in order to enable direct comparison (i.e., rather than developing a custom set). The first set contained seven hand poses, while the second set has six gestures along three axes of rotation. On these two gesture sets, BeamBand demonstrates accuracies of 92.5% and 94.6%
respectively. More unique is that accuracy remains high – 86.0% and 89.4 respectively – in sessions after the band is removed and reworn.

2 RELATED WORK

First, we review prior work that intersects with our application area of gesture recognition. We then move to work using acoustic reflectometry, with a particular focus on the HCI literature. Finally, we discuss beamforming more specifically, as this is our main technical approach, and review the few systems that have employed it in the HCI domain.

2.1 Hand Gesture Sensing

Robust sensing of the pose and movement of the hands has been a long-standing goal in HCI. The most immediate approach is to instrument the hands directly, with for example, gloves containing accelerometers [34][43], strain gauges [24] and capacitive sensors [37]. These methods typically place the sensors in locations well-suited for their gesture tasks. For example, Perng et al. [34] place the accelerometers at the fingertips for interactions such as pointing and which finger is raised. Whitmire et al. [48] use conductive fabrics as a capacitive sensor to detect finger and thumb interactions.

Slightly less conspicuous and invasive are systems that attempt to sense the hand from the wrist or arm. BeamBand falls into this category. One of the most popular approaches use optical sensors to detect hand geometrical changes that occur when a user performs a hand gesture. For example, WristWhirl [13] uses an array of infrared proximity sensors to detect the angle of the hand with respect to the wrist. Another optical approach uses a camera to observe hand gestures and reconstruct a 3D model of the hand [20]. The camera may also be mounted on a head mounted display [6]. There is also a significant body of research that leverages arm contour changes using pressure [7][18], infrared [10][13][29][47], and capacitive sensors [37].

Apart from querying the external state of the hands, people have investigated using signals from inside the body to determine hand state. A common approach is Electromyography (EMG) [19][38][39][41], which passively detects electrical signals from muscle contractions. Active sensing has also been explored, as seen in Electrical Impedance Tomography [50][51], which has been used to sense changes in the interior arm structure for hand gesture sensing.

Most related to BeamBand are the approaches that use acoustic signals. For example, Amento et al. [1], Hambone [8], Skinput [15], and Tactile Teacher [16] place passive acoustic sensors on the skin to listen to micro-vibrations resulted from finger taps, flicks, and pinches. More recently, research has shown that off-the-shelf smartwatches can also detect these signals [23][32][49][52]. Way et. [46] offers an excellent survey of wrist worn sensing approaches (including acoustic).

2.2 Acoustic Reflectometry in HCI

BeamBand is built on the principle of ultrasonic reflectometry, which examines objects of interests by emitting structured acoustic waves and measuring reflected signals. The time of flight of sounds can be used to infer the distance of objects, which is the most basic information that can be acquired. One example is single-emitter sonar, which has been in use for roughly a century in marine applications, and also echolocation, which animals have used for considerably longer. In addition to time of flight, the amplitude of reflections (including non-linear damping of different frequencies) and multipath effects can also reveal facets of the environment (e.g., material properties, room geometry).

In the HCI literature, acoustic reflectometry is most commonly encountered in the form of low-cost sonar sensors, used for range-finding. For example, “Sound of Touch” [31] and “FingerPing” [53] both use in-body sonar to detect hand gestures. Using in-air sonar sensors, Point Upon Body [25] detects touch input on the user’s arm. Measuring the Doppler shift of reflections has been used to detect the direction of hand gestures [3] and swipes on the forearm [31] (see [36] for a survey of ultrasonic doppler sensing in HCI).

2.3 Acoustic Beamforming

Beamforming can be achieved in any transmission medium, though it is most commonly applied to radio waves (e.g., radar [21], wireless communication [12]) and sound (e.g., medical ultrasound [11]). When multiple wavefronts are created, signals experience constructive and destructive interference, which can be used to form controlled beams of energy, hence the technique’s name. See Figure 2 and Video Figure for a concise visual primer (and [4][12][21][44] for more comprehensive background). Beamforming can also be used in reverse (i.e., inverse beamforming) [30], using an array of passive receivers to e.g., localize voices in a room [2] or finger snaps [14].

Most similar to BeamBand in operation are multi-emitter/receiver towed sonar arrays used in maritime applications [22]. In single-emitter sonar (regardless of the number of receivers), the first object encountered will typically reflect the largest signal. However, with multiple emitters, it is possible to have coordinated beamforming “pings” focus...
energy on an area of interest at varying distances. This is similar to medical ultrasound [11], which uses beamforming to focus acoustic energy at a particular depth in the body, and then essentially raster scan to produce a 2D image (which was used in EchoFlex [27][28] for hand gesture sensing). These setups cost many thousands of dollars, use MHz-range ultrasound, and require liquid or gel to couple to the sensed medium. BeamBand utilizes lower frequency 40 kHz ultrasound, which can more easily propagate through air and interact with surfaces without the use of an interfacing medium. Ultrasonic beamforming has also been used for haptics [5][26] and in-air levitation [17] in the HCI literature.

3 PILOT EXPERIMENTS

Prior to developing our system, we sought to gain a better understanding of how beamforming operates in a multi-emitter, airborne setup. We started with simulations in software, changing the relative phase of seven evenly spaced emitters outputting 40 kHz waves (~8.5 mm wavelength in room temperature air at 1020 mbar), allowing us to control the angle and focal point of the wavefront (Figure 2, top). To verify our theoretical model, we also ran real-world, physical experiments, which captures more complex interactions such as transducer impedance mismatch, multipath interference, and environmental noise. Our physical transducer array matched our software simulations: seven evenly spaced, 40 kHz transducers. As before, we changed the relative phase of the emitters to create different emission angles and focal lengths.

To capture and visualize ultrasound, we attached an independent transducer to a CNC gantry. We moved this gantry along a 4mm grid within a 12.4×12.4cm square. At each point on the grid, the transducer array would generate a beam at a specified angle or focal length, and the sensor would record the acoustic interaction at that location. The gantry would then move to the next point in the grid, the transducer array would repeat the same emission pattern, and the sensor would again make a recording. This procedure was repeated until all grid locations were recorded. Once complete, all waveforms could then be synchronously replayed to visualize the wavefront propagation (see Figure 2 and Video Figure). We found that our software and physical models generally matched (see examples in Figure 2).

During this stage of development, we also tested many different ultrasonic transducers with various power ratings, physical size, and beam widths. To assess performance, we placed two identical transducers 1cm apart, facing one another. One was driven at 100 Vpp, while the other was actuated by the emission. The transducer pair with the highest received signal was inferred to have the best combination of emission efficiency and air impedance match. We ultimately selected [35], a readily available transducer with a 12.8 mm diameter, 40 kHz resonant frequency, and 70° beam width.

4 IMPLEMENTATION

BeamBand consists of three main components. First is our custom sensor board (Figure 3), which generates, captures, and processes ultrasonic signals. Next is a sensor band,
which contains ultrasonic transducers that emit and receive signals (Figure 1A). The total cost of our proof-of-concept hardware was $220. Finally, we have laptop-based software that receives data from the hardware and performs further processing and machine learning. We now describe these elements in greater detail.

4.1 Sensor Board and Transducers

We use eight 40 kHz in-air ultrasonic piezoelectric transducers [35] (identified in Section 3). A single sensing instance consists of firing a single strong pulse using 7 transducers, each with a specified phase shift. To drive these transducers with software-controlled waveforms, we built a custom sensor circuit (Figure 3), which has three main components – a high voltage EMCO SIP100 DC-DC power regulator [9], high voltage amplifiers, and a multiplexed analog frontend. A Teensy 3.6 was used to control the sensor circuit [40], which we overclocked to 240 MHz.

To configure the microcontroller to toggle its digital pins, generating a 3.3 V\textsubscript{pp} 40 kHz square wave. This signal is amplified to 100 V\textsubscript{pp} to drive the transducers. To minimize cross-channel interference and switching overhead, each transducer has a dedicated amplifier. In order to perform accurate beamforming, we need tight control of transducer firing times. To minimize latency, we write directly into the microcontroller’s I/O map register, allowing us to toggle 8 output pins simultaneously in a single clock cycle (4.17 ns). This tight control allows us to manipulate the relative phase of our transducers at a granularity of \(\pm 0.1^\circ\).

To capture reflected ultrasound, the one unused transducer is configured to act as a receiver. During the firing sequence of the other seven transducers, we clamp the receiver transducer to ground, which helps prevent inadvertent actuation due to acoustic coupling and electrical noise. After firing is complete, we disconnect the clamp and connect the receiver transducer to our analog frontend. We then pass the signal through an active high pass filter with fixed gain (\(f_c=39\) kHz, \(G=5\)) with an additional amplification stage with adjustable gain up to 40X. The amplified signal is then DC biased to \(V_{ADC}/2\) and sampled by the microcontroller’s 16-bit ADC at 333 kHz. All captured waveform data is transmitted to a laptop over USB for further computation.

4.2 Power Consumption

We did not optimize the power consumption of our proof-of-concept hardware, which is powered by 5V via its USB connection. Nonetheless, we did measure current draw: \(-400\)mA total. Of the total current draw, 250mA is from our overclocked Teeny 3.6 board (100mA when not overclocked). Our DC-DC converter consumes \(-140\)mA, most of which is conversion loss. All other components, including our transducers, consume \(-10\)mA.

4.3 Transducer Band

As seen in Figure 1, we fabricated a band that could be worn on the arm or wrist. We placed eight transducers in a horse-shoe arrangement, following the contour of the arm, and roughly 1cm above the surface of the skin. The band is made of EVA foam [42] to allow for greater conformity and to reduce acoustic coupling between transducers. An adjustable elastic band is used to affix the sensor to the user. We chose not to include any transducers aimed at the back of the hand, as fingers generally articulate inwards. It is worth noting that this arrangement is slightly different than our physical simulations (where the transducers were arranged in a linear array); we re-ran our physical simulations with the horseshoe arrangement and saw a slight degradation in the coherence and resolution of the beamforming. However, we consider the compactness of the horse-shoe arrangement to outweigh this minor effect.

4.4 Beamforming

We selected 5 angles for beamforming (-45°, -22.5°, 0°, +22.5°, +45°), illustrated in Figure 1B, that cover the typical range of finger and wrist motion. We also focus at 3 distances (Figure 1B): 2 cm, which roughly correlates to the base of the palm; 8 cm, which roughly correlates to the base of the fingers; and infinite focus to capture more distant features, such as finger tips. Infinite focus and 0° are the same beamforming pattern, so thus in total, each sensing round consists of 7 unique beamformed emissions.

Figure 3. The custom sensor board for BeamBand. A) DC-DC converter, B) Teensy 3.6, C) high voltage amplifiers, D) multiplexer, and E) filter and amplification stage.
deviation of each bin as a feature, segmenting waveforms (8 configuration data collection). Thus, one is in optimizations could include time multiplexing the emission, and capture smaller recording signal return. However, to see if there were interesting reflections at longer ranges for experimental purposes, we captured extra large buffer. This results in a full sensor frame (56 beamforming sequences which we call a "sensing frame" (illustrated in Figure 1B).

4.6 Framerate
Each beamforming firing sequence takes 0.5 ms to generate and emit, followed by 1.5 ms of data collection. Thus, capturing a full sensor frame (56 waveforms) takes 112 ms. This results in ~8 full sensor frames per second.

For experimental purposes, we captured extra large buffers to see if there were interesting reflections at longer ranges. However, our study (and also seen in Figure 4) shows most signal returns within 0.8 ms, and if we contract to this smaller recording period, framerate increases to ~14 Hz. It is also possible to pre-generate beamforming sequences and store them in memory, which would save a further ~28 ms per sensor frame and increase framerate to ~22 Hz. Further optimizations could include time multiplexing the emissions such that one is in-flight while another is returning.

4.7 Features and Machine Learning
Our machine learning pipeline first converts the 56 incoming waveforms captured by our hardware into features. We segment each waveform into 20 bins and take the standard deviation of each bin as a feature, yielding 1120 values. We use Scikit-learn’s Random Forest (default parameters, 500 trees) [33] for classification. All tasks were performed on a standard configuration 2013 MacBook Pro 15".

5 GESTURE SET
Rather than invent a custom gesture set, we purposely chose to adopt two gesture sets from the literature to reduce design bias and enable direct comparison between systems. The first is the hand gesture set defined in Tomo [50]. These seven gestures (relax + six "hand" gestures) are depicted in Figure 5 (green underscore). We also adopted the hand gesture set defined in Jung et al. [18], which extends or flexes the hand along three axes (two wrist axes and one finger axis). These six gestures are depicted in Figure 5 (purple underscore). We refer to this gesture set as “six-axis” in later text. Note these gesture sets have four common gestures, Right = Wrist Flexion, Left = Wrist Extension, Fist = Finger Flexion, and Relax = Finger Extension.

6 EVALUATION
In this study, we evaluated the gesture classification performance of BeamBand. We recruited 10 participants (4 female, mean age 25), which had a mean wrist diameter of 5.5 cm (SD=0.8). The study took approximately one hour to complete and paid $20.

6.1 Procedure
Participants wore BeamBand on their non-dominant wrist (i.e., like a watch). All of our participants were right handed, so the BeamBand was worn on the left wrist. A single round of data collection consisted of each gesture being performed once, in a random order. Each gesture was

Figure 4. Example waveforms from four gestures (data received by transducer closest to thumb).

Figure 5. Our two gesture sets – Tomo set underscored in green and Six-Axis set underscored in purple (note four gestures are shared). A) Relax/Finger Extension, B) Fist/Finger Flexion, C) Right/Wrist Flexion, D) Left/Wrist Extension, E) Stretch, F) Thumbs Up, G) Spider Man, H) Radial Deflection, and I) Ulnar Reflection.
held for a few seconds, during which time 10 sensor frames were recorded. A session consisted of ten rounds of data collection. To add variety and realism, we collected two sessions of data for each user, with the sensor being removed and reworn in between. This procedure yielded 18,000 sensor frames (10 sensor frames × 9 gestures × 10 rounds × 2 sessions × 10 participants).

6.2 Within-Session Accuracy

To simulate the performance of gesture recognition when the system is calibrated when first worn, we performed a leave-one-round-out cross validation, where we trained on nine rounds within a session and tested on the tenth (all combinations). We repeated this for both sessions independently and averaged the results.

In the full, nine-class combined gesture set, the average within-session accuracy across all participants was 90.2% (SD=3.7). In the Tomo gesture set specifically, the average within-session accuracy was 92.5% (SD=2.2), while the six-axis gesture set achieved 94.6% (SD=3.4) accuracy. The largest source of error was confusion between similar hand-closing gestures, such as Fist and Thumbs Up, which accounted for 15.2% of the total error in the hand gesture set. Confusion matrices can be found in Figure 6.

6.3 Across-Session Accuracy

One significant challenge for on-body sensing systems is the ability to perform well across worn sessions. To evaluate the drop in performance after BeamBand is reworn, we ran a leave-one-session-out cross validation for each of our participants, where we train on all data from session one and test on all data from session two, and vice versa, averaging the results. In the full, nine-class combined gesture set, the average across-session accuracy for all participants was 81.4% (SD=15.9). In the Tomo gesture set, the average across-session accuracy was 86.0% (SD=12.7), and in the six-axis gesture set, the average across-session accuracy was 89.4% (SD=10.9). We saw a similar confusion between Fist and Thumbs Up, which accounted for 9.1% of the total error in the hand gesture set. However, other gestures appeared unaffected after rewearing the sensor (e.g., Left and Wrist Flexion performed at 94.2% and 96.2%, respectively). See Figure 7 for this experiment’s confusion matrices.

6.4 Across-User Accuracy

Another significant challenge for on-body systems is the ability to be trained once and work for all users (i.e., without per-user training or calibration). To investigate this potential, we ran a leave-one-user-out cross validation for each of our participants, where we train on all of the data across both sessions from nine participants and test on both sessions from a tenth participant (all combinations). In the full, nine-class combined gesture set, the average across-user accuracy was 44.2% (SD=8.8). In the Tomo gesture set, the average across-user accuracy was 51.7% (SD=10.4), and in the six-axis gesture set, the average across-user accuracy was 63.2% (SD=8.5). This low performance suggests that users’ hands are different and perform gestures differently. Nonetheless, some gestures appear to be more consistent across users, such as Wrist Flexion and Radial Deviation, which performed at 80.1% and 79.2%, respectively.

6.5 Comparison to Prior Results

Our within-session results are similar to the two systems from which we drew our gesture sets. Within session, Jung et al. [18] reports 95.4% accuracy across six gestures, while Tomo [50] on the wrist achieves accuracies of 96.6% across seven gestures. On these, BeamBand achieves 92.5% and
94.6% respectively. When the gesture sets are merged (nine classes), BeamBand is 90.2% accurate.

Our system also performs comparably to other systems with custom gesture sets. Most notably, SensIR [29] reports 93.3% accuracy across twelve gestures, zSense [47] is 94.8% accurate across nine gestures, Skinput [15] is 96.8% accurate on four finger flicking gestures, and Mime [6] achieves ~95% accuracy on four gestures. Note that none of these systems evaluate across-session or across-user accuracy.

Few systems evaluate across-session accuracy, which is particularly challenging for on-body sensing systems. Tomo reports across-session accuracies of 65.3% for seven gestures. On the same gesture set, BeamBand achieves 86.0%. Jung et al. does not report cross-session accuracy, but for reference, BeamBand achieves 89.4% accuracy on its gesture set.

Rarest are systems that evaluate across-user accuracy (except for worn computer vision systems, which tend to be robust). Tomo reports across-user accuracies of 38.8% on the wrist across seven gestures, while BeamBand achieves 51.7% on the same set. We could not find any other points of comparison in the literature.

6.6 Robustness to Sleeve Occlusion

Unlike light, ultrasound can pass through thin fabrics. We found in development that we could roll our sleeves down over the sensor and train the system occluded with minimal impact on accuracy. In order to more formally measure robustness to sleeve occlusion, we placed two identical transducers, facing each other, 8 cm apart. We drove one transducer using a function generator (40 kHz, 10 Vpp) while the other was connected to an oscilloscope. We then draped a single layer of various fabrics over the transmitting transducer to simulate sleeve occlusion. We tested ten fabrics of different material, thicknesses and knit density (Figure 8).

While thickness does appear to correlate with signal attenuation, a more significant factor is knit density. For example, the polyester dress shirt was among the thinnest of our tested fabrics, and yet hurt performance the most. Conversely, the wool sweater (low knit density) was one of our better performing materials, despite being our thickest.

7 STRENGTHS & WEAKNESSES

While BeamBand is competitive with prior systems, it is not yet sufficiently accurate for e.g., a consumer device. However, as a proof of concept, the technical approach looks promising. In order to achieve “out-of-the-box” gesture recognition, more work is required to develop a generalizable model. Collecting more data across a wide range of participants may improve robustness. There may also be merit in moving away from classical machine learning methods towards deep learning. We also suspect the addition of a calibration stage that homes the orientation of the wristband could raise across-session and across-user accuracies.

Another avenue for future work is exploring different frequencies of ultrasound. Transducers running at 40 kHz are ubiquitous (and thus inexpensive) but are almost certainly not the optimal frequency for gesture recognition (a
wavelength of ~8.5 mm is likely too large). Higher frequencies could enable superior sensing of fine-grained motions and gestures, though at the cost of higher signal attenuation in air, which would have to be overcome with a higher drive voltage or more sensitive analog frontend.

Although a horseshoe arrangement should permit some degree of beamforming in the axis normal to the palm, we treat our array as though it was linear, which permits beamforming along the plane parallel to the palm. More advances beamforming patterns, or certainly a 2D transducer array, would enable 3D raster-scan-like capabilities, which could offer much richer signals. Without doubt, it would facilitate recognition of gestures like Fist and Thumbs Up, which in cross-section look fairly similar.

We used a general-purpose microcontroller to facilitate research and rapid prototyping. In a commercial implementation, beamforming patterns would be saved in memory and specialized, energy-efficient hardware (e.g., ASICs) would drive the entire sensing process. Reducing the sensing duty cycle and running at full frame rate only when a change is detected would also improve power consumption. The sensing principle itself is fairly power efficient; the transducers themselves require virtually no power to drive. Thus, we believe a tether-less, self-contained version of BeamBand is possible with proper engineering.

There are also some important physical constraints. For example, we needed to raise the transducers off the skin in order to project acoustics over the bump at the base of the palm, which increases the minimum thickness of the band. Another limitation was the size of the transducers we selected – almost 13 mm in diameter. However, the piezo-elements inside are ~5 mm in diameter, which suggests tighter integration is possible. Also, ultrasonic transducers are not restricted to cylindrical housings; medical ultrasound utilizes small square elements arranged in a strip. Indeed, BeamBand could sit behind an acoustically-transparent plastic window on the side of smartwatches, very similar to medical ultrasound wands.

8 CONCLUSION

We have presented BeamBand, a novel worn sensing method that uses ultrasonic beamforming for on-body hand gesture recognition. BeamBand projects ultrasonic wavefronts at different angles and focal points on the user’s hand, and measures waves reflected back to the band. We evaluated two gesture sets sourced from the literature and our user study reveals promising accuracies, both within-session and across-session. We hope our effort will act as a catalyst for deeper investigation into ultrasonic beamforming for enabling novel interactions.

ACKNOWLEDGEMENTS

This work was generously supported with funds from the Packard Foundation and Sloan Foundation. We are also indebted to Prof. Robert Xiao for his help with embedded development, and to Evi Bernitsas who sparked our interest in beamforming for human input sensing.

REFERENCES

